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Evolution of moments over quantum wavepackets or classical 
clusters 
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University, Canberra, ACT 2600, Australia 

Received 10 April 1984 

Abstract. Using a symplectic notation which allows the equations to apply equally to a 
wavepacket representing a spin-less quantum particle or to a cluster of identical classical 
particles without mutual interactions, the study of the time-evolution of moments is 
extended to arbitrary orders for arbitrary Hamiltonians. Appropriately symmetrised 
moments for the quantum case are seen to play a special role and correspond very closely 
to the classical moments. 

1. Introduction 

The evolution in time of the state of a quantum system can be represented, at least 
formally, by the evolution of the moments over the system. This is most appropriate 
for a wavepacket, i.e. a quantum state where the spread of position and  momentum 
are in some sense small. Here the close parallels between classical and quantum 
mechanics will be exploited to deal simultaneously with the evolution of moments 
over a quantum wavepacket and  those over a classical system of particles without 
mutual interactions, again without a large spread in position or momentum values (i.e. 
a cluster). Moments are averages of products of deviations from some reference value 
of position and  momentum. In the quantum case the average will be the usual 
expectation value over the wavepacket while in the classical case it will be the mean 
over the particles in the cluster. 

Earlier work by Messiah (1961), Andrews (1981a, b)  and Reid and Ray (1983) has 
dealt with such systems where the motion is describable by a potential, by expanding 
the potential in series of powers of deviations from the reference trajectory. For the 
case of a classical cluster, this approach has been extended to motion under an  arbitrary 
Hamiltonian (Andrews 1983). These papers gave approximate equations for the 
evolution of low-order moments where higher-order moments were neglected. Such 
an  approximation scheme is valid where the wavepacket or cluster is sufficiently small 
on the scale of changes in the forces. 

In what follows the quantum case Rill also be extended to an  arbitrary Hamiltonian 
and both the quantum and classical cases will be extended to moments of arbitrary order. 
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2. Notation 

The symplectic notation (e.g. Goldstein 1980, Andrews 1983) will be used throughout. 
Thus Greek letters will run from 1 to 2 N  where N is the number of (generalised) 
coordinates required and  x" will represent both (generalised) position and  momentum 
with XI, XI+"' ( i  = I ,  2 , .  . . , N) denoting the ith component of position and momentum 
respectively. The reference point for the evaluation of moments will be denoted by 
5". In the quantum case x" will be ( a  set of) operators but 5" will always be a 
c-number, that is it will commute with everything. The deviation from the reference 
trajectory will be X" := x" - 6". 

A typical moment is 

X " l  an:= (X"lX"2 . . .  X%).  (2.1) 

For a quantum system, the order of the cy's is important and  the angled brackets denote 
the expectation value while for a classical system of JV particles with the position- 
momentum of the Ath particles denoted by X z ,  

i 

( X U )  . . . X".) = x2x;> . . . x> (2.2) 
A= I 

and the result is symmetric under interchange of any of the superscripts. 

3. Exact equations for the evolution of the moments 

Hamilton's classical equations of motion can be written 

(3.1) f" = 

where Hp =3H/dxPand  e l s N + ' =  I ,  eN"- '=-l  for 1. < I - Z  '--. N with all other elements of 
eap  zero. Differentiating (2.1), the time-derivative of the general moment for a classical 
cluster is 

n 
pl " 8 ,  = c (X"l . . . X"! IX"!X5+, . . . X"!,) 

! = I  

n 

= 1 (X"1 . . . X " ~ - I ( E " ~ ~ H ~  - i"a)X"c+ . . . X",l). (3.2) 
z = I  

In the quantum case, the time-derivative of expectation values is obtained from 

d(A) /d t  = ( ( i / h ) [H ,  A]+3A/at), 

leading to 
(3.3) 

The commutator can be evaluated with 

[ H ,  x"]= - ih&"P HP (3.4) 
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and hence both the classical and  quantum cases can be written as 
n k " ~ ' ~ ' " ~  = (~"tP(x"i . . ,  X a ~ - ! H P X " , + i  . .  . X " ~ )  - ~ " ~ X " ~ . . . " , - I ~ ~ + , . . . ~ "  ). (3.5) 

i =  I 

This equation of motion for the moments can be regarded as a generalisation of 

d(x")/dt  = &"'(HP), (3 .6)  

Ehrenfest's relation 

obtained from (3.5) by taking n = 1 and  6" = 0. 

4. Series expansion of the Hamiltonian 

The evolution equations (3.5) are now converted into a set involving only moments 
by expanding H p  about the reference trajectory tu, that is in powers of X " .  Such 
Taylor expansion of an  operator function has been discussed in the accompanying 
paper by Hall (1985). In  general, the specification of a n  appropriate set of Taylor 
coefficients is complicated by the ambiguity in ordering the operators in the expansion. 

Usually one is concerned with Hamiltonians which are symmetric in the sense 
used by Hall (1985, § 5). Application of Weyl's rule to find the quantum Hamiltonian 
corresponding to a given classical Hamiltonian will always give a symmetric result. 
There exist operators which are Hermitian but not symmetric and  we can see no  good 
reason to exclude these as potential Hamiltonians, but as far as we know none has 
ever been proposed as physically realistic. For symmetric Hamiltonians one has 
available the simple result that the expansion can be expressed in terms of symmetric 
multinomials and then the coefficients are identical with those of the expansion of the 
corresponding classical Hamiltonian. 

In any case one can write 

(4.1) 

For a classical cluster, 

which is obviously symmetric. For a symmetric quantum Hamiltonian the h, ,  yL will 
also be symmetric and equal to those of the corresponding classical Hamiltonian; more 
generally they will be non-symmetric but their symmetrical part h ( y l  y h )  will equal the 
coefficients of the corresponding classical Hamiltonian. 

Inserting (4.1) into (3.5) and defining 

4YI , , : = [ l / ( k + l ) l & a p ( h p y ,  Yh+hhYIPY2 v i + . .  .+h , ,  Y h P )  (4.3) 
gives 

This expresses the time-derivative of any moment in terms of all the moments and  the 
coefficients of the Hamiltonian along the reference trajectory. Two important cases 
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for the choice of reference trajectory are the centroid (x") and a solution of the 
corresponding classical equations of motion, &" = saphp  = 4". Such a solution with 
t"(0)  = ( X " ) I ~ = ~  will be called the basal trajectory. The centroid is itself a moment (of 
the first order) and its evolution equation is a special case of (4.4), putting m = 1 and 
5" = 0. Therefore reference to the centroid (which will be considered in 9 8) requires 
more complex schemes of approximation than reference to the basal trajectory, where 
5" can be determined in advance by classical methods. 

In the case of reference to the basal trajectory, the moment equations become 

This equation is exact; it is, in effect, another representation of Schrodinger's equation 
for the time-evolution of states in the quantum case and of Hamilton's equations of 
motion in the case of a classical cluster. The question of convergence is important but 
is ignored here. 

5. Approximate calculation of the moments 

If the deviations from the basal trajectory remain sufficiently small, on a scale set by 
the coefficients of the Hamiltonian, then the contribution to the right-hand side of 
(4.5) by high-order moments will be negligible. By neglecting moments of order greater 
than n + m  one can calculate moments of order n accurate to order n + m .  Such 
accuracy will be denoted by a subscript m ; thus 

x $ . , . " n  = ~ ~ ~ " ' " n + O ( n + m +  1). (5.1) 

A sequential scheme of calculation can be carried out using 

where 
n m t l  1 

(5.3) " "g-lyl Yhas+l am E C C y k x m - 1 - c k  
$ = I  k = 2  

where the ck are arbitrary apart from the constraint c k  G k - 2. This differential equation 
is solved for x$ "n subject to the initial condition 

x$ " " ~ , = O = X " l  " n  11=0, (5.4) 

it being arranged that at every stage yml "n is known as a function of time from earlier 
integrations in the sequence. The ambiguity represented by the arbitrary constants c k  

merely reflects the possibility of using, in fnmi " n ,  moments more accurate than required 
provided they are available from earlier integrations. Equation (5.2) greatly generalises 
equations (4.2) and (4.3) of Andrews (1983). 

6. Symmetrised moments in terms of classical trajectories 

In the case of symmetrised moments , y ( a l - a n '  , which are averaged over all permutations 
of the indices, the differential equation for the time evolution will now be solved in 
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terms of appropriate classical trajectories. The non-symmetric moments can be 
expanded in terms of the symmetric ones using Hall's relation (1984, equation (4.3)) 
and taking expectation values. 

If in (5.2) the term 2 ,  q5;ix> " ~ - l y a ~ + i  " ~ 2  is symmetrised over c y ,  . . . an, the result is 
the same as 2 ,  q5;'xEl " ~ - l Y " ~ + l  (This separability property does not extend to the 
terms in fa,! "n and therefore it can be seen that even the symmetrical quantal moments 
do not have the same evolution as the corresponding classical moments. They do have 
the same evolution, however, when the Hamiltonian is quadratic.) Hence the sym- 
metrised form of (5.2) is 

This inhomogeneous differential equation for the moments of order n can be solved, 
assuming f m " ~ . . . ~ t l )  is known as a function of time, by the method used in the classical 
case (Andrews 1983, 5 5). Thus let u " , ( t )  be the solutions of UuP = 4 n y u y P  with 
u n p ( 0 )  = a",. These can be found by differentiating the classical trajectories with 
respect to the initial position-momentum. Now define 

(6.2) G o P ( ? ,  t ' )  = u"y( t )EYSuuS(t ' )E,p = uuY(t)upy(t') 

and the solution of (6.1) is 

- U Q l p 1  . . . u " n p , , x  ( P ,  . . P , , )  
x!?"n)  - 

r1 
+ J G"l,,(t, t ' )  . . . G"nDn(t, f)f:l . . P r l ) ( t ' )  dt'. 

0 

In principle, this can be applied repeatedly to increase the accuracy of the moments 
to whatever order is required. 

7. The evolution of the centroid and of moments relative to it 

The evolution of the centroid relative to some basal trajectory is a special case of (6.3) 
with n = 1. Thus 

( x u  ) = 6" + lof G", ( t ,  t ' )  f ( 1 ' )  d t' + O( m + 2), (7.1) 

where 6" has been chosen such that ( " ( 0 )  = ( x " ) ~ = ~ .  This generalises an earlier result 
(Andrews 1981a, equation (4.2)) to arbitrary Hamiltonians and to arbitrary orders of 
accuracy. 

The moments relative to the centroid can readily be found from those relative to 
the basal trajectory. Some low-order cases were considered earlier (Andrews 1983, 
§ 6). The general transformation to the moment x U i - " n  relative to the centroid can be 
written as 

(7.2) 
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with 

where 

subject to ak, bk, c k ,  dk =z k - 2. Again the symmetrised approximate moments can be 
found as in (6.3), and the general moments from these. 

Of course the unp and G", must be recalculated at each order of accuracy and  
the work involved is therefore much greater than for the scheme based on moments 
relative to the basal trajectory. 

9. Discussion 

A striking outcome of the preceding development is the special role of the symmetrical 
moments. This is brought out strongly in the case of quadratic Hamiltonians. For 
these it follows from Ehrenfest's theorem that the centroid follows a classical trajectory. 
It is not difficult to show that all symmetrical moments have the same evolution 
equations as d o  classical moments under the corresponding classical Hamiltonian. If 
the quantum system and the classical cluster are taken to have the same symmetrised 
moments at some time, then these moments will be the same for all time. It should 
be noted, however, that some sets of values of the moments which are possible for a 
cluster are inaccessible to quantum systems because of the uncertainty relations 
(Andrews 1981a, Q 5 ) .  Of course quadratic Hamiltonians are well known to have 
special properties and there is already a considerable literature on the evolution of 
their moments (e.g. Hasse 1978, Remaud and Hernandez 1980). 

For arbitrary quantum Hamiltonians, even the symmetrical moments d o  not have 
the same evolution as classical moments but the difference is of order h' (where it is 
assumed that the Hamiltonian is Hermitian and  independent of h ) .  Since all moments 
can be expressed in terms of the symmetrical ones, this can be encompassed by the 
more general semiclassical result 

where again it has been assumed that ,y&~~l" ; ;  = ,yc"lle,g:,l at t = 0 and that the Hamiltonian 
is Hermitian and  independent of h. To prove (9. I ) ,  add (4.4) to the result of reversing 
the order of a I  . . . a,  and use x"1 n, +x",a " = 2 ~ ' ~ '  " l ' + O ( h 2 ) ,  which follows from 
(4.3) of Hall (1985). 

Equation (9.1 ) seems to imply that the classical limit associated with a wavepacket 
is not a trajectory but a cluster or classical distribution. How can one find such a 
classical distribution which has initially the same moments as the symmetrical moments 
of a given quantum system? The answer to this follows from the results that Weyl's 
rule applied to products of powers yields symmetrised products (Hall 1985). Thus a 
suitable classical distribution is given by the Wigner distribution. 

Home and  Sengupta (1983) take the interesting view that the appropriate classical 
limit is an ensemble of classical particles. They found, for three particular quadratic 
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potentials and  for initially Gaussian wavepackets, that the time-evolution of Wigner 
distribution agrees with the Schrodinger evolution of the quantum wavepacket. They 
appear to conjecture that this wll be true generally but, in the light of the  comments 
preceding equation (6.1), this cannot be so. 
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